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This project will utilize existing capabilities at both ri) o

Laboratories

institutions to demonstrate magneto-inertial fusion scaling ——*t’fe

Sandia National Laboratories Laboratory for Laser Energetics

= 80-TW, 20 MJ Z pulsed = 60-beam, 30-TW, 30 kJ,
power facility OMEGA laser facility

= 1-TW, multi-kJ Z-Backlighter = 4-beam, TW to PW, multi-kJ
laser facility OMEGA-EP laser facility

= 30T B-field system (900 kJ 20 T B-field systems (200 J

stored energy) stored energy)




Sandia
Recent laser-driven spherical capsule implosions* showed ) Jeuma
higher temperatures (and yields) due to fuel magnetization%_n?*

| é | | I
+By =80 kG
IBO:O

neutron yield (x10%)

e L =
I

- 1
X rays 23.0 23.5 24.0 24.5
Wall thickness (um)

192571

TC926011

=  Simple axial field used in a spherical implosion geometry
= Field suppressed electron heat conduction losses along one direction

= The resulting 15% increase in temperature and 30% increase in yield is
consistent with estimates for transverse heat loss suppression

= This is an example of success with a target that produced fusion yield
without magnetization—can we produce yield in targets that would not
produce significant yield otherwise? 4



This project is centered around the Magnetized Liner () &
Inertial Fusion (MagLIF) target design for Z ok

Axial Magnetic Field (10 T initially; 30 T available)

= |Inhibits thermal losses from fuel to liner
= May help stabilize liner during compression
=  Fusion products magnetized

Laser heated fuel (2 kJ initially; 6-10 kJ planned)

= |nitial average fuel temperature 150-200 eV
= Reducescompression requirements (Ry/R;~ 25)
= Coupling of laser to plasmain an important scienceissue
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';,(/‘ Magnetic compression of fuel (~100 kJ into fuel)

= ~70-100 km/s, quasi-adiabatic fuel compression

= Low Aspect liners(R/AR~6)are robust to
hydrodynamic (MRT) instabilities

= Significantly lower pressure/density than ICF

Goal is to demonstrate scaling: Y (B,g, Ejacers 1)
DD equivalent of 100 kJ DT yield possibleon Z
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This project will use multiple facilities to i) st
demonstrate MagLIF scaling & laser heating o
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Initial Conditions

* Be liner

* por~ 1-4mg/cc

*B,,~ 10-30T (~0.1 MG)

MagLIF targetimplosion history
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Laser Heating

*Epcer ~ 2-6 k] @.53pum
*Tpr ~ 0.2 KeV

*wt”~ 2-5

* Researchon Z, ZBL,
Omega, Omega-EP

Inner liner boundary,
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Implosion/stagnation
*Vimp™~ 70-100 km/sec

* Py ~ 5 Gbar

*Tion > 5 keV

*wt~ 200(B~100 MG)
* ResearchonZ, Omega
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A design for laser-driven MagLIF on OMEGA has been rh) i
developed and will be demonstrated in the next 2 years  FF-¥

40 compression beams X-ray image of

SG2 phase plates Fill tube :
Upto 12 kJin 2.5ns Pressure compression
transducer

Preheatbeam fromP9 __ RlngA 3 only
200 pm phase plate | ; AT
Upto200Jin 2.5ns

Target

MIFEDS coilsB ~10 T support

52019 pm

Ring3 Rings4 Ring 3 ~180 km/s (Ring 4)
Parylene-N Target
Outer diameter: 600 um D, fill density: 1-2.1 mg/cc
Shell thickness: 30 um Preheat temperature: > 100 eV

Compressed length: 600 — 700 um

= Experimentsin 2015 have established that we can couple the laser to the target
and heat it all the way through to >100 eV

= We have achieved cylindrical compression at the desiredimplosionvelocity,
and are now optimizing the axial uniformity and compressed length




This project will benefit from extensive diagnostic capabilities () i
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available on our facilities that tell us more than just the yield %E‘F*
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This project will benefit from expertise in theory and

UR
2D/3D modeling capabllltles available to participants ‘*u.e
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Our project will demonstrate magneto-inertial fusion in () s,
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relatively high-density, short-duration plasmas, and study um *
. . . . . . LLE
the scaling of magneto-inertial fusion using modeling

= Target pre-conditioning experiments
= Needed to understand initial conditions for integrated Z, Omega shots
= Will use Omega, Omega-EP, Z, Z-Backlighter

= Will determine a set of conditions needed to achieve functional fuel
pre-conditioning (i.e., laser and magnetic field configurations)

= Laser-driven MagLIF experiments on OMEGA

= |f successful, will demonstrate our ability to predict and scale the
performance of magneto-inertial fusion targets over a wide range of
size, time scale, and available energy (e.g., ~1 kJ to ~1 MJ absorbed)

=  Numerical Modeling & Theory
= Will improve & refine simulation models using data collected

= Will apply benchmarked tools to examine MIF parameter space over a
broad range exceeding that of near-term MagLIF experiments on Z

= Tech transfer & Outreach activities
10



Z experiments have demonstrated thermal fusion with >10%(rh) e

Laboratories

2.45 MeV neutrons from a ~70 km/s, 1.5 mg/cm? implosion —*t‘fe

= The initial MagLIF experiments on Z within the past 1.5 years
demonstrated that there is merit to the idea of magneto-inertial fusion

= Laser heating of a magnetized initial plasma with minimal high-Z mix
has been shown to be critical

= |nitial experiments used “unconditioned” beams and thick (>3 um) foils and
deposition into the gas was lower than expected

= Low energy deposition and mix is borne out by several different experiments
on multiple facilities

= Simulations suggesta >100 eV initial average plasma temperature (with low
losses) would result in an order of magnitude increase in yield (~ 8 eV now?)

= This project will greatly accelerate our progress with high shot rate*:
= ~100-150shots/year on Z-Backlighter facility
= ~10shots/year using Z-Backlighter shooting into Z (different diagnostics)
= ~24-30shots/year on OMEGA-EP [3 shot days/year]
= ~40-50shots/year on OMEGA [4 shot days/year]

= Present modeling predicts fusion yields of ~100 kJ (DT) are possible on Z 11



Achieving energy-relevant yields will require extrapolation () i
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from existing facilities, so demonstrating credibility of our 'L’Es*
modeling tool predictions is important to ARPA-E
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